【预告】报告主题:生物质汽化制备富氢合成气及合成气转换

发布者:刘飞发布时间:2019-09-12浏览次数:125

报告题目:生物质汽化制备富氢合成气及合成气转换

报告时间:916日(星期一)9:00

报告地点:工科楼A325会议厅

主讲人 鲁保旺 研究员


主讲人简介


鲁保旺博士,日本富山大学氢同位素研究中心研究员,日本化学、分子筛、催化剂等学会会员,Current Organic Chemistry Biomass to New Energy客座主编。鲁保旺研究员研究领域覆盖多孔体材料及催化剂,催化活性中心的高性能分散,以及其在环境科学,氢能源科学中的应用。


AbstractBiomass, as a neutral carbon source, is considered as an ideal primary energy source. Gasification is an important process in regards to the utilizationof biomass in energy recycling, which convertsbiomass into a producer gas mixture consisting of CO, H2, CO2, and other trace species. As the producergas mixture has a low energy density, it is not very practical. To addressthisissue,a reforming process following gasification is also generally requiredto increase H2concentration and reduce impurities.And the producer gas is often reformed to produce useable CO3–5and synthetic natural gas (SNG)6–10.In this study we performed a detailed investigation on the bench-scale gasification of biomass to produce H2rich producer gas, or followed by chemical conversion of the producer gas using NiO/SBA-15 as a catalyst.  NiO/SBA-15 appeared to be suitable for H2rich (over 50 v/v% (N2free)) producer gas production, as well CH4,CnHmand tar reduction. Although the amount of NiO did not affect the gas composition, tar removalwas decreased when the amount of NiO was considerablyincreased. In addition, theconversion of the producer gas was alsocarried out at high and low temperatures in the presence or absence of steam, using NiO/SBA-15 as a gas conversion catalyst. Regardless of the conversion temperature, conversion of the producer gas was largely affected by steam. At 750°C and no steam ≈14% CO2was converted to CO, whereas no CO2conversion occurred in the presence of steam. At low temperature, the maximum CH4yield in the absence of steam was 23%, which was higher than in the presence of steam (15%).